Tank Monitoring and Control System Design Report

Introduction

The following report presents a fluid tank monitoring and control system that can be used as
test station in an industrial 10T application design and testing.

The control algorithm in this report is fictional, but shows a simple operation that can be
modified based on the actual application’s requirements.

System description and connections

The system consists of two sensors and two relays connected to an Arduino Uno
microcontroller board, which transfers the two sensors’ data and receives the two
actuators’ data via serial USB connection from an edge device, which is a Raspberry Pi
microprocessor board that stores the sensors data into a database and also contains the
logic for the automation and the graphical user visualisation and control. The Arduino
system also includes an LCD screen for onsite data visualisation.

As it is a test system, it was built on a test stand for ease of use and fast modification.

Picture 1 below shows the communication interconnects for the system:

LCD1

-
-]
=
v
'
o
x

Al

=18
9
2
-
=7
Fs
=5
£
=3
L]
- 2
1
-

]
L
0y

Picture 1. System communication diagram (Created using Wokwi Online Simulator?)

Page 1 of 18
Yeojin Song ID102060145

Picture 2 below shows as simplified power interconnect of the above system:

REF

-

ONINOYY = x¥
oNnn OO Z)

EH (~waa) wimeza_, ,
dhnbavniy moBRRE

-
o

L] 1
x
x

Picture 2. System power diagram (Created using Wokwi Online Simulator?)

Picture 3 below shows a photo of the actual system connected and powered from a
Raspberry Pi:

USB interface b/w U1 & U2.
Carries power and data.

Picture 3. Photo of actual system

Page 2 of 18
Yeojin Song ID102060145

Table 1 shows the system’s bill of material (BOM)

| Designator | Type Model Interface Power Quantity
1 Ul Microcontroller Board | Arduino Uno | Analog and 5VviaUSB | 1
R3 Digital (5V (from RPi)
analog and
logic)
2 | U2 Microprocessor Board | Raspberry Pi | Digital (3.3V | 5Vviawall | 1
3B+ logic) adapter (physical
or virtual)
3 L1 Input device - HS-SR04 DI & DO (5V 5V from 1
Ultrasonic Sensor logic) Ul
(distance sensing,
digital)
4 |T1 Input device - Jaycar AO (0-5V) | 5V from 1
Thermistor XC4494 Ul
(temperature sensor,
analog)
5 | LCD1 Output device -16x2 16x2 12C 12C serial 5V from 1
LCD module interface (5vV | Ul
logic)
6 | RL1,RL2 Output device - Relay 10A Relay DI (5V logic) | 5V from 2
module Ul
7 | Swi Input device - Dip na DO (5V logic) | na 1
Switch array for
testing
8 USB cable b/w Arduino | USB B to A uSB 5V 1
and RPi
9 Jumper wires na na na as
needed
10 Breadboard — power na na na 1
and other
interconnects
11 Ethernet cable (Rpito | na TCP/IP na 1
PC, or via WiFi)

Input devices

L1 and T1 are the two input sensors to the system. SW1 also acts as an input device that was
used during development.

The ultrasonic sensor L1 is used to monitor the tank’s fluid level. This type of sensor was
selected as it is low cost, easy to implement and works well with most fluid mediums. It
communicates with the Arduino board via two digital signals - a trigger digital input (digital
output in the Arduino) and an echo digital output (digital input in the Arduino). The based
code used is from an Arduino PING example code? for an ultrasonic sensor that uses single
pin that toggles b/w trigger and echo. The code was modified to use two pins as per our
sensor. Only the ‘cm’ conversion was used in this case and the sensor output was capped at

Yeojin Song ID102060145

Page 3 of 18

100cm — all received values above 100cm will display 100cm. The range from 0-100cm was
also mapped to 0-100% and the % value is what is passed to the edge controller. The LCD
screen also receives this value.

The temperature sensor T1 is used to monitor the tank’s fluid temperature. It is a thermistor
module and was selected due to its ease of use and good accuracy. It communicates with
the Arduino board via 0-5V analog output (analog input in the Arduino). A sample
conversion code? was provided by the manufacturer and modified to suit the system’s
requirements. The Math.h library that comes preinstalled with Arduino IDE was also
required as a number of multiplications, divisions and log calculations are required for the
conversion from a raw binary value to a meaningful number in degrees C. The converted
temperature value in degrees C is provided in a double format, but was converted to an
integer and the number rounded to the nearest high value. This was done so that the
temperature value can fit in the limited character space of the LCD. The rounded number is
passed to the edge controller and the LCD.

Output devices

The system consists of 3 output devices — 2x relay modules for controlling two valves and
one LCD screen for onside data visualisation.

The main output devices are two relay modules RL1 and RL2 that switch ON and OFF the
higher-powered valves that stop or allow fluid flow from and out of the tank. The two relay
modules are driven directly by two digital outputs at the Arduino side as the modules
contain the relay coil driving and protection circuitry. Both relay coils are low power 5V
types, which allows power to be supplied to the coils directly from the 5V output from the
Arduino board. Initial tests for the relay modules were done with switches (SW1), but later
the operation of them was automated based on the input sensor data. The two variables
that drive the relays is received from the edge device that checks based on the set logic
when to switch ON or OFF each relay. The data is sent via serial UART over USB bus.

The LCD screen is the last output device that is used in the system and its purpose is data
visualisation. It is a 16 character by 2 lines (16x2) modules based on the Hitachi HD44780
LCD controller and uses PCF8574AT I12C 10 expander IC as its 12C (Arduino side) to parallel
(LCD side) interface. Since the communication between the Arduino board and the LCD
module is via 12C interface, two libraries are required — first is the preinstalled in the
Arduino IDE Wire.h library*® that handles the general 12C initialisation and communication
and second is the LiquidCrystal 12C library® that handles the LCD control — initialisation,
characters display, backlight control etc.

Page 4 of 18
Yeojin Song ID102060145

The graphics on the LCD are as per picture 4 below:
The text in the blue areas is static.

The text in the red areas are the 4
variables, on the left are the input
sensor data and on the right are the
states of the two relays.

VSSVDDVE RS RW E DA D1 D2D3I DA DS DEDT A K

Picture 4. 16x2 12C LCD module (Created and simulated using Wokwi Online Simulator?)

Control algorithm

The provided control algorithm is an example of how the system may operate in real
situation. The code may be implemented in the Arduino control board for on-site local
control, or implemented in the edge device by passing the sensor data, compute and give
back the relay states.

A flow chart diagram of the control algorithm is provided below:

(Level > 50) | | (Temperature > 26)

True False

Valve_IN = OFF

Valve_In = ON

Temperature > 28

True False

Valve_Out = OFF I

Valve_Out = ON

.

Flow Chart 1. Simple Automation Control (Created with code2flow online app’)

Page 5 of 18
Yeojin Song ID102060145

For initial testings the automation logic was ‘placed’ inside the Arduino control board to
prove operation. This feature can be later use to develop independent local control if
allowed from the edge device, or connection with edge device is lost, or for onsite
maintenance purposes. The attached Arduino sketch later in this report shows this local
automation control.

The basic operation of the system is described in the following 3 steps:

1. Arduino receives sensor data from the two sensors — ultrasonic and temperature;

2. Applying the set logic for the automation and thus controlling the two relays that
switch ON, or OFF the valves Vin and Vout. If an edge device is used, the input sensor
data will be sent via UART through USB bus to the edge device, information will be
stored in database, control applied and the two relay states returned via the same
UART through USB bus connection.

3. Displaying temperature, level and the relays status data on the LCD screen. If edge
device is not used all this information will also be send via UART through USB bus for
visualisation in a e.g. serial monitor in a PC.

Edge system

A Raspberry Pi 3 B+ is chosen (based on availability) for an edge device. The RPi
microprocessor board has preinstalled OS on an SD card that handles the firmware and
hardware communication tasks. This board also supplies power to the Arduino system via
the USB bus.

The incoming sensor information will be stored in a MariaDB database inside RPis OS.
Incoming sensor data and outgoing relay status data is handled via a python scrip and
passed to the database and the user interface that can be implemented using HTML and
CSS.

Page 6 of 18
Yeojin Song ID102060145

Picture 5 below shows a proposed HMI (Human Machine Interface), or web-
based control panel of the system:

Picture 5 Tank Monitoring and Control Ul (Graphics created in MS Visio)

References:

1. Wokwi Online Simulator, https://wokwi.com/

2. Arduino PING Ultrasonic Range Finder, https://docs.arduino.cc/built-in-
examples/sensors/Ping

3. Temperature sensor,
https://www.jaycar.com.au/medias/sys master/images/images/9886484398110/XC
4494-manualMain.pdf

4. Arduino Wire library,
https://www.arduino.cc/reference/en/language/functions/communication/wire/

5. Zambetti, A., A Guide to Arduino & the I12C Protocol (Two Wire), 2023,
https://docs.arduino.cc/learn/communication/wire

6. Brabander, F. and Schwartz, M., LiquidCrystal 12C library, Version 1.1.2,
https://reference.arduino.cc/reference/en/libraries/liquidcrystal-i2c/

7. Code to flow chart converter, https://code2flow.com/

Page 7 of 18
Yeojin Song ID102060145

https://wokwi.com/
https://docs.arduino.cc/built-in-examples/sensors/Ping
https://docs.arduino.cc/built-in-examples/sensors/Ping
https://www.jaycar.com.au/medias/sys_master/images/images/9886484398110/XC4494-manualMain.pdf
https://www.jaycar.com.au/medias/sys_master/images/images/9886484398110/XC4494-manualMain.pdf
https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://docs.arduino.cc/learn/communication/wire
https://reference.arduino.cc/reference/en/libraries/liquidcrystal-i2c/
https://code2flow.com/

Appendix

Code 1 Arduino Sketch 1 —local control with print to serial monitor

/*
Author: Yeojin Song
Date: 28-04-2023
Revision: 1

Tank Monitoring and Control System

Local automation control,

*/

#include <math.h>
#include <Wire.h>

#include <LiquidCrystal I2C.

// Constants won't change.

no edge device

h>

They're used here to set pin numbers:

// Set Al as analog input pin that a thermistor is attached to

const int rawTemp = Al;
// Pin 2 set to control the

const int RelayOut = 2;
// Pin 4 set to control the
const int RelayIn = 4;

// Set pins 7 & 8 as Echo &
// The two pins are used by
// HC-SR0O4

const int echoPin 7;
const int trigPin = §8;

// Variables will change:
// Set variable states
int inState = 0;

int outState = 0;

int manState = 0;

double Thermistor;

double Temp;

relay controlling the empty valve
relay controlling the fill in valve

Triger (DI & DO)
the Ultrasonic Sensor

// Set the LCD I2C address to Ox3F & config. for 16 chars by 2 line display

LiguidCrystal I2C lcd(0x3F,

// Initialise setup
void setup() {
// LCD initialise
lcd.begin() ;
// LCD backlight ON
lcd.backlight() ;
// LCD clear
lcd.clear();

16, 2);

// LCD set cursor location and print
// This data do not change on the LCD
// Length data on line 1 left side

lcd.setCursor(0,0);
led.print ("L %:);

// Fill in valve state on
lcd.setCursor(10,0);
led.print("Pi:");

line 1 right side

// Temperature data on line 2 left side

lcd.setCursor(0,1);
led.print ("T") ;
lcd.print((char)223);

Yeojin Song ID102060145

Page 8 of 18

led.print("C:");

// Empty valve state on line 2 right side
lcd.setCursor(10,1);

led.print("Po: ") ;

// Initialize serial communications at 9600 bps:
Serial.begin(9600) ;

// Initialize pins 2, 4 & 7 as outputs:
pinMode (RelayOut, OUTPUT) ;
pinMode (RelayIn, OUTPUT) ;
pinMode (trigPin, OUTPUT) ;

// Initialize pin 8 as input:
pinMode (echoPin, INPUT) ;
}

long microsecondsToCentimeters (long microseconds) {

// The speed of sound is 340 m/s or 29 microseconds per centimeter.

// The ping travels out and back, so to find the distance of the object
we

// take half of the distance travelled.

return microseconds / 29 / 2;

}

// Main Loop
void loop () {
// START Temp.
calcs//// /1111117777777 7777777777777
/
// Read, assign and convert to K the analog in value:
Thermistor = analogRead(rawTemp) ;
Temp = log(((10240000/Thermistor) - 10000));
Temp = 1 / (0.001129148 4+ (0.000234125 4+ (0.0000000876741 * Temp *
Temp))* Temp);
// Convert Kelvin to Celcius
Temp = Temp - 27/3.15;
// Round to nearest integer
int temp int = round(Temp) ;
// END Temp.
calcs//// /1111117777777 7777777777777
/17

// START Level
calcs////// /17777777777 7777777777777 7/77777777777777777777777777777777777777
// Eestablish variables for duration of the sound ping, and the
distance result
// in inches and centimeters:
long duration, cm;

// The sound ping))) 1is triggered by a HIGH pulse of 2 or more
microseconds.

// Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

digitalWrite(trigPin, LOW) ;

delayMicroseconds (2) ;

digitalWrite(trigPin, HIGH);

delayMicroseconds (10) ;

digitalWrite(trigPin, LOW) ;

duration = pulseIn(echoPin, HIGH);

Page 9 of 18
Yeojin Song ID102060145

// Convert the time into a distance in cm
cm = microsecondsToCentimeters (duration);

// Cap readings over 100cm to 100cm
if (cm >100){
cm = 100;

}

// map cm distance from 100 to Ocm to 0-100%
int Level = map(cm, O, 100, 100, 0);
// END Level
calcs/// /71 /177777777777 777777777777777777777/777777777777777777777777777777
/

if ((Level > 50) || (temp _int > 26)) {
// turn Fill In valve OFF due to high temperature (>26) or high level
(>50) :

digitalWrite(RelayIn, LOW);

Serial.println("Fill In Valve OFFE!");

lcd.setCursor(13,0);

led.print ("OFE™) ;

// Print empty space after the data to ensure all characters clear

// when relay staus chages from OFF to ON

led.print (" ") ;

if (temp int > 28) {
// turn Empty valve ON due to high temperature (>28):
digitalWrite (RelayOut, HIGH) ;
Serial.println("Empty Valve ON!");
lcd.setCursor(13,1);
led.print ("ON") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
lcd.print (" "),

}

else(
// turn Empty valve OFF:
digitalWrite (RelayOut, LOW) ;
Serial.println("Empty Valve OFE!");
lcd.setCursor(13,1);
led.print ("OFE™) ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
led.print (" ") ;

}

}
else{

//turn Fill In valve ON:

digitalWrite(RelayIn, HIGH);

Serial.println("Fill In Valve ON!");

lcd.setCursor(13,0);

lcd.print ("ON") ;

// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON

led.print (" ") ;

// turn Empty valve OFF:
digitalWrite (RelayOut, LOW) ;
Serial.println("Empty Valve OFE!");
lcd.setCursor(13,1);

Page 10 of 18
Yeojin Song ID102060145

led.print ("OFE") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
led.print (" ") ;
}

Serial.println() ;

// Print via Serial UART the level in 'cm' to a PC
Serial.print("Fluid Level = ");

Serial.print (Level) ;

Serial.println("%");

// Print via Serial I2C the level in 'cm to an LCD

// Set cursor to charcter # 4 in line O

lcd.setCursor (4,0);

lcd.print (Level) ;

// Print empty space after the data to ensure all characters clear
// when level data chages from xxxx to xxx to xx and x digits
led.print (" "),

// Print via Serial UART the temp. in '°C' to a PC (format int)
Serial.print("Fluid Temperature = ");

Serial.print (temp int);

Serial.println("°C");

// Print via Serial I2C the temp. in '°C' to an LCD

// Set cursor to charcter # 4 in line 1

lcd.setCursor(4,1);

lcd.print(temp int);

// Print empty space after the data to ensure all characters clear
// when level data chages from xxx to xx and x digits
led.print (" ") ;

// Set a delay of 1s before the loop executes again
delay (1000);

Code 2 Arduino Sketch 2 Edge control — pass input sensor data via serial in the format
‘Level’, Temp’new line e.g.:

26,21
29,21
and listens to receive via serial the control of the two relay modules:

RelayOut - 1=0N, 2=0FF
Relayln - 3=0N, 4=0FF

/*

Author: Yeojin Song

Date: 28-04-2023

Revision: 1

Tank Monitoring and Control System

Remote monitoring and control, edge enabled

*/

#include <math.h>

Page 11 of 18
Yeojin Song ID102060145

#include <Wire.h>
#include <LiquidCrystal I2C.h>

// Constants won't change. They're used here to set pin numbers:

// Set Al as analog input pin that a thermistor is attached to
const int rawTemp = Al;
// Pin 2 set to control the relay controlling the empty valve

const int RelayOut = 2;
// Pin 4 set to control the relay controlling the fill in valve
const int RelayIn = 4;

// Set pins 7 & 8 as Echo & Triger (DI & DO)

// The two pins are used by the Ultrasonic Sensor
// HC-SR04

const int echoPin
const int trigPin

7
87

// Variables will change:
// Set variable states
int inState = 0;

int outState = 0;

int manState = 0;

double Thermistor;

double Temp;

// Set the LCD I2C address to O0x3F & config. for 16 chars by 2 line display

LiguidCrystal I2C lcd(0x3F, 16, 2);

// Initialise setup
void setup() {
// LCD initialise
lcd.begin() ;
// LCD backlight ON
lcd.backlight() ;
// LCD clear
lcd.clear();

// LCD set cursor location and print

// This data do not change on the LCD

// Length data on line 1 left side
lcd.setCursor(0,0);

led.print ("L 2:");

// Fill in valve state on line 1 right side
lcd.setCursor(10,0);

led.print ("Pi:");

// Temperature data on line 2 left side
lcd.setCursor(0,1);

led.print ("T") ;

lcd.print ((char)223);

led.print ("C: "),

// Empty valve state on line 2 right side
lcd.setCursor(10,1);

led.print ("Po:");

// Initialize serial communications at 9600 bps:
Serial.begin(9600) ;

// Initialize pins 2, 4 & 7 as outputs:
pinMode (RelayOut, OUTPUT) ;
pinMode (RelayIn, OUTPUT) ;
pinMode (trigPin, OUTPUT) ;

Yeojin Song ID102060145

Page 12 of 18

// Initialize pin 8 as input:
pinMode (echoPin, INPUT) ;
}

long microsecondsToCentimeters (long microseconds) {

// The speed of sound is 340 m/s or 29 microseconds per centimeter.

// The ping travels out and back, so to find the distance of the object
we

// take half of the distance travelled.

return microseconds / 29 / 2;

}

// Main Loop
void loop () {
// START Temp.
calcs//// /1177777777777 777777777
/
// Read, assign and convert to K the analog in value:
Thermistor = analogRead(rawTemp) ;
Temp = log(((10240000/Thermistor) - 10000));
Temp = 1 / (0.001129148 4+ (0.000234125 4+ (0.0000000876741 * Temp *
Temp))* Temp);
// Convert Kelvin to Celcius
Temp = Temp - 27/3.15;
// Round to nearest integer
int temp int = round(Temp) ;
// END Temp.
calcs//// /1171177717770 7777777777777 77777777
/77

// START Level
calcs//// /1117777777777 7777777777777 T
// Eestablish variables for duration of the sound ping, and the
distance result
// in inches and centimeters:
long duration, cm;

// The sound ping))) 1is triggered by a HIGH pulse of 2 or more
microseconds.

// Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

digitalWrite(trigPin, LOW) ;

delayMicroseconds (2) ;

digitalWrite(trigPin, HIGH)

delayMicroseconds (10) ;

digitalWrite(trigPin, LOW) ;

duration = pulseln(echoPin, HIGH) ;

// Convert the time into a distance in cm
cm = microsecondsToCentimeters (duration) ;

// Cap readings over 100cm to 100cm
if (cm >100){

cm = 1007
}

// map cm distance from 100 to Ocm to 0-100%
int Level = map(cm, O, 100, 100, 0);

Page 13 of 18
Yeojin Song ID102060145

// END Level
calcs//// /7777777777777 7777777777777
/

// Following IF statements read the incoming serial data and trigger the
relay modules
// RelayOut - 1=0ON, 2=0FF
//RelayIn - 3=0N, 4=0FF
if (Serial.available()>0)
{
//Read serial input
int value = Serial.read();
if (value == '1")
{
digitalWrite (RelayOut ,HIGH) ;
lcd.setCursor(13,1);
led.print ("ON") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
lcd.print (" "),
}
else if (value == '2")
{
digitalWrite (RelayOut,LOW) ;
lcd.setCursor(13,1);
led.print ("OFE") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
led.print (" ") ;
}
else if (value == '3")
{
digitalWrite (RelayIn,HIGH) ;
lcd.setCursor(13,0);
lcd.print ("ON") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
led.print (" "),
}
else if (value == '4")
{
digitalWrite (RelayIn,LOW) ;
lcd.setCursor(13,0);
led.print ("OFE") ;
// Print empty space after the data to ensure all characters clear
// when relay staus chages from OFF to ON
led.print (" ") ;

}

// Print via Serial the level in '%'

Serial.print(Level) ;

// Print via Serial I2C the level in 'cm to an LCD

// Set cursor to charcter # 4 in line 0

lcd.setCursor(4,0);

lcd.print (Level) ;

// Print empty space after the data to ensure all characters clear
// when level data chages from xxxx to xxx to xx and x digits
led.print (" ")

// Print a coma separator

Page 14 of 18
Yeojin Song ID102060145

Serial.print(",");

// Print via Serial the temp. in '°C' (format int)
Serial.print(temp int);

// Print via Serial I2C the temp. in '°C' to an LCD

// Set cursor to charcter # 4 in line 1

lcd.setCursor(4,1);

lcd.print(temp int);

// Print empty space after the data to ensure all characters clear
// when level data chages from xxx to xx and x digits

led.print (" "),

Serial.println();

//The Input sensor data is printed in the following form:
// 'Level data', 'Temp data'new line e.g.:

//28,21

//30,21

// Set a delay of 1s before the loop executes again
delay(1000);

Code 3 Python code on Raspberry Pi that listens for the 2 incoming sensor values and pass
them to an HTML code to be displayed on a web page and also takes the toggled values
from the web page via the HTML code and passes it to the Arduino to control the Relays.

import serial
import time
from flask import Flask, render template

app = Flask(name)

#Dictionay of pins with name of pin and state ON/OFF

pins={
2 : {'name' : 'Relay Out' , 'state' : 0},
4 : {'name' : 'Relay In' , 'state' : 0}
}

#main function when accessing the website
Capp.route("/")
def index():

#TODO: Read the status of the pins ON/OFF and update dicctionary
#This data will be sent to index.html (pins dicctionary)
templateData ={ 'pins' : pins }

#pass the template data into the template index.html and return it
return render template('index.html', **templateData)

#function with buttons that toggle depending on the status
@app.route ("/<changePin>/<toggle>")
def toggle function(changePin, toggle):
#convert the pin from the URL into an integer:
changePin = int(changePin)
#Get the device name for the pin being changed:
deviceName = pins[changePin]['name']
#1if the action part of the URL is "on," execute the code indented
below:
if toggle == "on'":

Page 15 of 18
Yeojin Song ID102060145

#set the pin high:
if chagePin ==
ser.write(b"1")

pins[changePin] ['state'] = 1
if chagePin ==

ser.write(b"3")

pins[changePin] ['state'] = 1

#save the status message to be passed into the template:
message = "Turned " + deviceName + " on."
if toggle == "off":

if changePin ==
ser.write(b"2")
pins[changePin] ['state']

if changePin ==
ser.write(b"4")
pins[changePin] ['state']

I
o

I
o

#Set the pin low:
message = "Turned "+deviceName+" off."

#This data will be sent to index.html (pins diccionary)
templateData = { 'pins' : pins }
#pass the template data into the template index.html and return it
return render template('index.html', **templateData)
#Function to send simple commands
@app.route (" /<action>")
def action(action):
if action == 'actionl':
ser.write(b"1")
pins[2]['state'] = 1
if action == 'action2':
ser.write(b"2")
pins[2]['state'] = 0
if action == 'action3':
ser.write(b"3")
pins[4]['state'] = 1
if action == 'actiond':
ser.write(b"4")
pins[4]['state'] = 0
#This data will be sent to index.html (pins deicctionary)
templateData = { 'pins' : pins }
#pass the template data into the template index.html and return it
return render template('index.html', **templateData)

#Main function, set up serial bus, indicate port for the webserver,
#and start the server.
if name == " main ":

ser = serial.Serial('/dev/ttysS0',9600,timeout=1)

ser.flush()

app.run (host='0.0.0.0", port=80, debug=True)

Page 16 of 18
Yeojin Song ID102060145

Code 4 HTML code on Raspberry Pi:

<html>
<head>
<meta http-equiv="refresh" content="5">
</head>
<body>
<hl>Tank Monitoring and Control</hl>
<p>Length Value 1l: {{value}}</p>
<p>Temperature Value 2: {{value2}}</p>
<h2>Toggle Relays</h2>
{% for pin in pins %}
<h3>{{pins[pin] .name}}</h3>
{%$ if pins[pin].state==1 %}
is currently on</h2>
<div class="row">
<div calss="col-md-2">
Turn offf
</div>
</div>
{% else %}
is currently off</h2><div class="row"><div
calss="col-md-2">
<a herf="/{{pin}}/on" class="btn btn-block btn-lg btn-primary"
role="button">Turn on</div></div>
{% endif %}
{% endfor %}
<h2> Commands </h2>
<h3> Relay Out: TURN ON </h3>
<h3> Relay Out: TURN OFF </h3>
<h3> Relay In: TURN ON </h3>
<h3> Relay In: TURN OFF </h3>

</body>
</html>

Page 17 of 18
Yeojin Song ID102060145

Screen captures of the webpage generated on the Raspberry Pi

O
$® @ widlindex... [Mlyeoiin.. @ locah. @ 1GFi. T, @ L 232 @B

localhost/action3 - Chromium
@ localhost/action3 x| + v

€« > C @ localhost/action3 < % » 0 2

Tank Monitoring and Control

Length Value 1:

Temperature Value 2:

Toggle Relays

Relay Out

is currently on
Tumn offf

Relay In

is currently on
Turn offf

Commands

Relay Out: TURN ON
L

® ® wiindex... [Wllyeciin.. @ localh. @@Fi. T, ¢ & 2320 W

localhost/action3 - Chromium v o x

J @ localhost/action3 x| =

& > C @ localhost/action3 < % » 0 2
Toggle Relays

Relay Out

is currently on
Turn offf

Relay In

is currently on
Turn offf

Commands

Relay Out: TURN ON
Relay Out: TURN OFF
Relay In: TURN ON

Relay In: TURN OFF

| 5 |

Yeojin Song ID102060145

Page 18 of 18

